Molecular Medicine

Saur, Dieter

Genetic engineering and therapeutic targeting of cancer

Our group focuses on a deeper mechanistic understanding of cancer biology using novel cutting edge genetic engineering, targeting and large-scale genome-wide screening technologies. We are studying the following fundamental biologically and clinically relevant aspects of cancer: how it develops, progresses, spreads to distant sites, and why it becomes resistant to anti-cancer therapies. The translation of new biological understanding into clinically useful diagnostic and therapeutic approaches is a key mission of the lab.

Selected publications:

Mueller S, Engleitner T, Maresch R, ..., Saur D*, Rad R* (2018). Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature. 554:62-68. *joint senior authors.

Schneider G, Schmidt-Supprian M, Rad R, Saur D (2017). Tissue-specific tumorigenesis – context matters. Nat Rev Cancer. 17:239-253

Maresch R, Mueller S, Veltkamp C, ..., Bradley A, Saur D*, Rad R* (2016). Multiplexed pancreatic genome engineering and cancer in-duction by transfection-based CRISPR/Cas9 delivery in mice. Nat Commun. 7:10770. *joint senior authors.

Rad R, Rad L, Wang W, ..., Liu P, Saur D, Bradley A (2015). A conditional piggyBac transposition system for genetic screening in mice identifies oncogenic networks in pancreatic cancer. Nat Genet. 47:47-56.

Schönhuber N, Seidler B, Schuck K, ..., Schmid RM, Schneider G, Saur D (2014). A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer. Nat Med. 20:1340-7.

Eser S, Reiff N, Messer M, ..., Schmid RM, Schneider G, Saur D (2013). Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer. Cancer Cell, 23:406-20.

Rad R, Cadiñanos J, ..., Liu P, Saur D*, Bradley A* (2013). A genetic progression model of BrafV600E-induced intestinal tumourigenesis reveals targets for thera-peutic intervention. Cancer Cell. 24:15-29. * equal contribution.

Klein S, Seidler B, Kettenberger A, Sibaev A, Rohn M, Feil R, Allescher HD, Vanderwinden JM, Hofmann F, Schemann M, Rad R, Storr MA, Schmid RM, Schneider G, Saur D. Interstitial cells of Cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity. Nat Commun. 4:1630.

von Werder A, Seidler B, Schmid RM, Schneider G, Saur D (2012). Production of avian retroviruses and tissue-specific somatic retroviral gene transfer in vivo using the RCAS/TVA system. Nat Protoc. 7:1167-83.

https://exp-cancertherapy.med.tum.de/en